The NewSchools Ignite Team prepared this report to share findings on science education and lessons learned from launching the Science Learning Challenge.

newschools ignite is a six-month virtual accelerator program that catalyzes product growth in market gaps important to teachers and students, and where innovation is lagging.

NewSchools Venture Fund is a national nonprofit venture philanthropy working to reimagine public education. NewSchools has three investment strategies, with Ignite being part of the Tools & Services strategy.

- **Innovative Schools**
 - Launch or redesign innovative district and charter schools

- **Tools & Services**
 - Support for-profit and nonprofits through market gap challenges and direct investments

- **Diverse Leaders**
 - Increase Black and Latino founders and CEOs, senior leadership, and board members
Overview

Part I: Why science matters

Part II: Challenges in K-12 science learning

Part III: Opportunities for edtech to support science learning
Part I: Why Science Matters

Science is an integral part of everyday life that unlocks future career paths for students

“The whole of science is nothing more than a refinement of everyday thinking.”

-Albert Einstein
Science learning can spark endless career possibilities for students and build critical skills

Doctor Physicist Programmer Teacher Newscaster Painter Pharmacist
Banker Pilot Engineer Chemist Musician

Building science-related skills

- Attention to detail
- Analytical skills
- Technical skills
- Calculations, measurements

Building behavioral skills that support science learning

- Creative abilities
- Communication & cooperation skills
- Organization skills
- Leadership skills

Source: iSeek Careers
Science-related fields have some of the fastest growing jobs, and offer substantial earning potential.

U.S. job growth, 2014-2024

- Science-related jobs (Overall): 17%
- Computing: 19%
- Advanced Manufacturing: 16%
- Engineering: 12%
- All Others: 12%

Earnings are higher with science degrees:

- Science-related Bachelor’s Degree: +65%
- Non-science related Graduate Degree

Source: Change the Equation, 2015; Georgetown University Center on Education and the Workforce, 2011.
There are more science-related jobs than candidates in the U.S.

For every 10 job posts...

- there are only ~5 qualified science-related candidates
- there are 36 overall qualified candidates

By 2018, there could be 2.4M unfilled science-related jobs

Source: Change the Equation, 2012; Adecco Consulting Report
Black and Latino workforce is growing, but increasingly underrepresented in science-related jobs

Growing emphasis on science education

Many of today’s jobs and those in the future require science-related skills. Technology has accelerated this need.

Today’s challenges require more complex analyses and science-based solutions. Global competitiveness is fueled by innovation, with science at its core.

Science literacy skills are currently not taught in an engaging way. This requires a shift towards hands-on, inquiry-based experiences from an early age.

Source: Adecco Consulting Report
Key Takeaways

1. Science education is an essential foundation

2. Science-related jobs are in high demand, without enough qualified candidates to fill them

3. While the Black and Latino workforce is growing, they are underrepresented in science-related careers

4. There is a greater focus on science education due to macroeconomic and societal factors
Part II: Challenges in K-12 Science Learning

Students are struggling to gain science mastery, and teachers need better resources to support science learning.

“The science fair projects of today could become the products or businesses of tomorrow.”

- President Barack Obama
Studies show student interest in science begins to decline as early as 4th grade

Interest in science over time by students

Among students originally interested in science, one-third lose interest by 4th grade and one-half by 8th grade.

Source: National Center for STEM Elementary Education at St. Catherine University, 2011
Science education is failing to teach more than two-thirds of middle school students

NAEP science scores for 8th graders, 2011

- Below Basic: 35%
- At Basic: 33%
- Proficient: 2%
- Advanced: 2%

National Assessment of Educational Progress (NAEP) is the largest nationally representative and continuing assessment of what America’s students know and can do in various subject areas.

Source: National Assessment of Educational Progress (NAEP), 2011
America’s position as the world’s innovation hub is being challenged

Global PISA science scores among 15-year-olds in select countries, 2012

Score is significantly higher than U.S.

#1 Shanghai-China (580)
#2 Hong Kong-China (555)
#10 Canada (525)
#20 Slovenia (514)

Score is not significantly different from U.S.

#28 U.S. (497)
#30 Latvia (502)
#40 Slovakia (471)
#50 Cyprus (438)

Score is significantly lower than U.S.

#60 Colombia (399)
#65 Peru (373)

The Programme for International Student Assessment (PISA) is a triennial international study conducted by the OECD to test skill and knowledge of 15-year-old students.

Source: OECD, PISA 2012
Within the U.S., scores are significantly lower among Black, Latino, and lower-income students.

PISA science scores within the U.S., 2012

Performance by Income

- 114 points difference

Performance by Race

- 107 points difference

Students in schools with:

- <10% eligible for free or reduced lunch (556)
- 50-74.9% FRL eligible (483)
- >75% FRL eligible (442)

- Asian students (546)
- White students (528)
- Latino students (462)
- Black students (439)

Source: OECD, PISA 2012
Among high school core subjects, college readiness in science remains the lowest

ACT High School Science Scores, 2014

- **Percentage of students who met college readiness benchmark scores**
 - English: 64%
 - Reading: 44%
 - Math: 43%
 - Science: 37%

- **Avg. science scores by race**
 - Asian: 23.2
 - White: 22.1
 - Latino: 18.8
 - Black: 17

Black and Latino students continue to score lower compared to other groups

Benchmark scores by subject

- 18 English
- 22 Reading
- 22 Math
- 23 Science

Source: ACT, 2014
The student pipeline is broken, resulting in fewer science-related professionals

Shortage of Science-related Graduates
Science education standards are being updated to better prepare students

The **Next Generation Science Standards (NGSS)** is a state-led initiative to develop new K-12 science standards rich in content and practice and arranged in a coherent manner across disciplines and grades to provide internationally benchmarked science education.

Every NGSS standard has three dimensions:
- disciplinary core ideas (deeper understanding of content)
- scientific and engineering practices (application to the real world)
- crosscutting concepts (interconnectedness of science and engineering)

Source: Next Generation Science Standards, Academic Benchmarks
NGSS progress and adoption has spread, leading other states to update science standards

Science education standards reform

- As of early 2016, 26 states have been involved in NGSS and 18 states have adopted them
- South Dakota has adopted similar state science standards
Key Takeaways

1. Students are struggling to achieve science mastery throughout K-12
2. Students are not prepared to pursue advanced science courses in college
3. Black and Latino students do not yet perform at the same levels as other racial groups
4. There is a growing U.S. movement for more rigorous science standards
Part III: Opportunities for Ed tech to Support Science Learning

Ed tech tools hold the potential to facilitate and improve science learning

“The only area where we don’t have really good content is in science.”
- Middle school principal
Teachers value digital tools, but struggle to find effective products

- **98%** Teachers see the value of using technology for student learning
- **93%** Teachers regularly use some form of digital tools to guide instruction
- **58%** Teachers across all subjects found digital tools to be effective

Source: Bill & Melinda Gates Foundation, 2015
A dearth of effective K-12 science tools to teach standards

Excerpt from “Teachers Know Best Report”: Four areas with the greatest deficit of instructional resources that are available, sufficient to teach the standards, and in digital form:

- K-5: Elementary English Lang. Arts
- 6-8: Middle School Social Studies
- 9-12: High School Math
- K-12 Science

Source: Bill & Melinda Gates Foundation, 2014

http://www.teachersknowbest.org/reports
Teacher needs vary across grade levels

What teachers want from science digital tools
Teachers Know Best 2.0 Report, Bill & Melinda Gates Foundation

<table>
<thead>
<tr>
<th>Grade Level</th>
<th>Desired Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-2</td>
<td>• Delivery instruction</td>
</tr>
<tr>
<td></td>
<td>• Vary delivery method</td>
</tr>
<tr>
<td>3-5</td>
<td>• Support student collaboration</td>
</tr>
<tr>
<td></td>
<td>• Foster independent practice</td>
</tr>
<tr>
<td>6-8</td>
<td>• Vary delivery method</td>
</tr>
<tr>
<td></td>
<td>• Diagnose student learning</td>
</tr>
<tr>
<td>9-12</td>
<td>• Support student collaboration</td>
</tr>
<tr>
<td></td>
<td>• Tailor learning experience</td>
</tr>
</tbody>
</table>

Source: Bill & Melinda Gates Foundation, 2015
There are fewer science ed tech options than math and language arts

Ed tech companies by subject areas

Number of companies listed on EdSurge Product Index (as of 2016)

- **Math**: 182
- **Language Arts**: 156
- **Science**: 74
NewSchools asked teachers what they use and seek

What technology/devices do students currently have access to at your school?

- Some teachers have 1:1 student-to-device ratio, while others noted device carts and computer labs
- Chromebooks and iPads were most popular, followed by other Windows laptops

Which science products do you currently use?

- Simulations and YouTube clips were common use cases
- Interactive illustrations and apps were used to explore biological systems
- Some had sophisticated tools (e.g. makerspaces, design)

How do you define quality in regards to edtech tools? What academic/social outcomes are you most interested?

- Student feedback and engagement were among the top qualities teachers sought in tools
- Collaboration is key (teacher and student, student to student)
- Deeper learning and connections to the world

Source: NewSchools Market Research, 2015
What do teachers see as opportunities to improve science learning?

- Introduce content via independent exploration
- Integrate with other subjects like design and 21st century skills
- Enable – not inhibit – social interaction and connection with the physical/natural environment

For K-5: Integrate with ELA and Math standards and offer professional development as most teachers are generalists

For 6-8: Provide teachers with support for deeper inquiry and “exploration of true phenomena”

For 9-12: Develop more hands-on, project-based content and creating connections to college and careers

Source: NewSchools Market Research, 2015
Consistent growth in K-12 edtech venture funding is encouraging

Growth in K-12 edtech investing, 2015

EdSurge

- **Curriculum Products**: Content tools that teach specific subjects and skills
- **Teacher Needs**: Products that help teachers with classroom-related activities such as grading, classroom management and lesson planning
- **School Operations**: Products that are designed to help improve the management of schools, teachers, students and parents, primarily for use by principals and other school administrators

<table>
<thead>
<tr>
<th>Year</th>
<th>Curriculum Products</th>
<th>Teacher Needs</th>
<th>School Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>$158MM</td>
<td>$58MM</td>
<td>$70MM</td>
</tr>
<tr>
<td>2014</td>
<td>$165MM</td>
<td>$183MM</td>
<td>$183MM</td>
</tr>
<tr>
<td>2015</td>
<td>$319MM</td>
<td>$71MM</td>
<td>$147MM</td>
</tr>
</tbody>
</table>

Source: EdSurge, 2015
The size of science ed tech funding deals grew in the past year

Notable Ed tech Funding in Science Education

Source: EdSurge, 2016
NewSchools Ignite launched the Science Learning Challenge to accelerate science innovation

Launched in July 2015, the Science Learning Challenge aimed to:

- **Empower students and teachers as explorers and creators**
- **Enable new interactions with peers, instructors and the physical world**
- **Leverage connections to other subject areas**
- **Make learning more accessible**
- **Connect content to life beyond school**
- **Ignite students’ curiosity to facilitate deeper learning in science**
Science Learning Challenge applicants reflected science ed tech market trends

Science Learning Challenge Applicant Pool – 119 companies

Science Subject Areas

- 65% Earth & Space Sciences
- 65% Life Sciences
- 77% Physical Sciences
- 82% Engineering/Technology/Applied Sciences

The most popular subject area was engineering/technology/applied sciences.

Grades

- 35% K to 2nd
- 68% 3rd to 5th
- 83% 6th to 8th
- 74% 9th to 12th

Most science edtech applicants focused on middle to high school content.

Note: A single company may fall under multiple subject areas and/or grades within the category
Science Learning Challenge applicants reflected science ed tech market trends

Platform†

- **76%**
 - Web (HTML)
- **46%**
 - iOS (iPhone/iPad)
- **33%**
 - Android (Google Play/Amazon)
- **24%**
 - Windows (client download)
- **22%**
 - Mac/OSX (client download)

Many offer their products within the web/HTML format. Roughly one-third operate on both web and mobile platforms.

Pricing Model†

- **59%**
 - Subscription (One-time purchase)
- **50%**
 - Paid (One-time purchase)
- **37%**
 - Free
- **30%**
 - Freemium (in-app upgrade)

The subscription model is most commonly adopted by applicants.

Note: A single company may fall under multiple subject areas and/or grades within the category
†Remaining % marked as ‘Other’
Science Learning Challenge winners were chosen through a rigorous selection process

Phase 1: Media and Social Outreach to Announce Challenge
Phase 2: Initial Screen and Diligence on Applicants to Select Semi-Finalists
Phase 3: Deeper Diligence on Semi-Finalists
Phase 4: Select up to 15 Winners

Learn more about the Science Learning Challenge and NewSchools selection criteria
Challenge winners create hands-on activities and connection to the physical world

Ardusat brings space exploration to the classroom by making it possible to run code on satellites orbiting earth.

LocoRobo is a digital and scientific literacy company that introduces students to the world of robotics and coding.

MudWatt engages students in hands-on, inquiry-based STEM learning, using the power of mud!

Lab4U is developing a set of apps that transform mobile devices into science instruments.

The Makers Empire makes it easy to effectively incorporate 3D design and printing into K-12 classrooms.
Challenge winners deliver seamless access to valuable content for teachers and students

BirdBrain Science is an adaptive platform that ensures students can read, grow, and learn independently.

https://www.birdbrainscience.com/

The PhET Interactive Simulations provides innovations in teaching, learning, and assessment.

http://phet.colorado.edu/

Science Bits is a repository of multimedia science lessons designed to fire up your science class.

New York Hall of Science provides iPad apps that support play, design projects, and collaboration.

http://noticing.nysci.org/

PowerMyLearning Connect is a free K-12 platform for driving personalized instruction and self-directed learning.

http://www.powermylearning.org/
Challenge winners integrate multiple subjects and make learning more culturally relevant and inclusive

Flocabulary
https://www.flocabulary.com/
Teachers use Flocabulary’s hip-hop videos, activities and assessments to engage students.

Mosa Mack Science
https://www.mosamack.com/
Mosa Mack Science provides engaging supplementary curriculum with animated mysteries and activities.

Nepris
http://www.nepris.com/
Nepris connects industry professionals with educators to bring real world relevance.

Science with Tom
http://www.sciencewithtom.com/
Science with Tom features science role models and music videos where students write their own lyrics.

Tuva
https://tuvalabs.com/k12/
Tuva is a data literacy company making statistics and data analysis accessible for learners.
We believe ed tech can positively impact K-12 science learning

TECHNOLOGY
Greater broadband access in schools, lower costs for digital science content, and new, creative solutions will impact how science is taught.

INVESTMENTS
K-12 ed tech investments have continued to grow, including greater interest within science, given the priorities to teach students 21st century skills.

TEACHER VOICE
Teachers have been vocal in demanding more effective digital tools, creating a clear pathway for science products to address their needs.

STANDARDS
The Next Generation Science Standards (NGSS) and similar standards help science companies build streamlined products across the nation.
Challenging roadblocks to transforming science education

PRODUCT INTEGRATION
Science products must adhere to school requirements like single sign-on, security and data privacy, and compatibility with existing tools.

RESEARCH
Resources and funds to conduct research studies are a huge barrier, but are key for determining the impact on student learning and for engendering educator and investor confidence.

SALES PROCESS
Science companies face a fragmented school market with generally long sales cycles.

FUNDRAISING
While there may be greater interest, science ed tech funding is at its infancy compared to school operation and other content products.
We encourage different stakeholders to build and support science ed tech products

Investors
- Keep abreast of the science education landscape and innovative tools, especially those featured in educational websites and graduates of accelerator programs
- Invest in promising science ed tech products with the goal of supporting scaling efforts

Educators
- Identify primary areas where technology can reduce complexity and time and enhance student learning
- Connect with other educators on effective science tools
- Be open to trying out ed tech tools and offering product feedback
- Advocate for science products that create value and student outcomes

Edtech entrepreneurs
- Examine product offerings with items covered in our market research
- Identify ways to incorporate educator feedback and conduct research studies on the effectiveness of the product
- Determine ways to minimize implementation time/costs and teacher professional development commitments
Key Takeaways

1. Teachers see benefits to science tools, but struggle to find effective tools.

2. Market research shows need for science digital tools.

4. Challenge winners are addressing the market gap, but more support is necessary to close it.
For more information, visit ignite.newschools.org

If you are interested in helping us address market gaps, sign up to join our educator community at:

ignite.newschools.org/educators